\square

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

 B.E. (Civil Engg.) I-Semester Main \& Backlog Examinations, Jan./Feb.-2024

 B.E. (Civil Engg.) I-Semester Main \& Backlog Examinations, Jan./Feb.-2024 Basic Electrical Engineering for Civil Engineers

 Basic Electrical Engineering for Civil Engineers}

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A (10 $\times 2=20$ Marks $)$

Q. No.	Stem of the question	M	L	CO	PO
1.	State the KCL \& KVL.	2	1	1	1,2
2.	Give the relation between voltage and current in an inductor	2	1	1	1,2
3.	List the advantages of sinusoidal alternating voltage	2	1	1	1,2
4.	In a three phase balanced Star connected system, if the line voltage is 415 V , find the phase voltage.	2	1	1	1,2
5.	Give the classification of DC generators.	2	1	2	1,2
6.	Explain the use of Fleming's Left-Hand rule in DC machine.	2	1	2	1,2
7.	Give the slip of induction motor.	2	1	3	1,2
8.	List the applications of Squirrel Cage three phase induction motor.	2	1	3	1.2
9.	Calculate the current i in the circuit shown,	2	3	1	1,2
10.	An alternating voltage is given by $\mathrm{v}=300 \sin 377 \mathrm{t}$. Determine the peak value and RMS value of the voltage. $\text { Part-B }(5 \times 8=40 \mathrm{Marks})$	2	3	1	1,2
11. a)	Using nodal analysis, determine current I_{x} in the circuit shown below with $R_{1}=5 \Omega, R_{2}=10 \Omega$ and $R_{3}=5 \Omega$.	5	3	1	1,2

b) Discuss the terms Node, Junction, \& Mesh in an electric circuit.
12. a) A resistance of 10Ω and capacitor of $50 \mu \mathrm{~F}$ are in series and they are connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) impedance of the circuit (ii) current in the circuit.
b) Give the advantages of three phase ac supply.
13. a) Derive the equation of EMF induced in DC generator.
b) Explain the Fleming's Right-Hand rule used in DC machine.
14. a) Describe the construction of three phase induction motor with necessary diagram.
b) Differentiate between squirrel cage induction motor and slip-ring induction motor.
15. a) Using mesh analysis, determine current through 4Ω resistor.

b) What is an active element \& passive element in an electric circuit? List the examples of each element.
16. a) Determine the torque established by the armature of a four pole DC motor having 774 conductors, two parallel paths, 24 milli-weber of flux per pole and the armature current is 50Λ.
b) If a 4-pole 50 IIz 3 -phase induction motor runs at 1450 rpm , then calculate the value of slip?
17. Answer any two of the following:
a) Describe the procedure of mesh analysis in electrical circuits with suitable example.
b) In series RL circuit, derive the expression for current, impedance, active power consumed and power factor of the circuit.
c) Explain the Armature speed control methods of DC shunt motor in detail.

3	2	1	1,2
5	3	1	1,2
3	2	1	1,2
5	3	2	1,2
3	2	2	1,2
5	2	3	1,2
3	2	3	1,2
5	3	1	1,2
3	2	1	1,2
4	3	2	1,2
4	3	3	1,2
4	2	1	1,2
4	2	1	1,2
4	2	2	1,2

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level - 2	50%
iii)	Blooms Taxonomy Level - 3 \& 4	30%

